On Optimal Correction of Inconsistent Linear Constraints

نویسندگان

  • Paula Amaral
  • Pedro Barahona
چکیده

In practice one has often to deal with the problem of inconsistency between constraints, as the result, among others, of the complexity of real models. To overcome these conflicts we can outline two major actions: removal of constraints or changes in the coefficients of the model. This last approach, that can be generically described as “model correction” is the problem we address in this paper. The correction of the right hand side alone was one of the first approaches. The correction of both the matrix of coefficients and the right hand side introduces non linearity in the constraints. The degree of difficulty in solving the problem of the optimal correction depends on the objective function, whose purpose is to measure the closeness between the original and corrected model. Contrary to other norms, the optimization of the important Frobenius was still an open problem. We have analyzed the problem using the KKT conditions and derived necessary and sufficient conditions which enabled us to unequivocally characterize local optima, in terms of the solution of the Total Least Squares and the set of active constraints. These conditions justify a set of pruning rules, which proved, in preliminary experimental results, quite successful in a tree search procedure for determining the global minimizer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the optimal correction of inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint

This work focuses on the correction of both the coecient and the right hand side matrices of the inconsistent matrix equations $AX = B$ and $XC = D$ with orthogonal constraint. By optimal correction approach, a general representation of the orthogonal solution is obtained. This method is tested on two examples to show that the optimal correction is eective and highly accurate.

متن کامل

A reformulation-linearization-convexification algorithm for optimal correction of an inconsistent system of linear constraints

In this paper, an algorithm is introduced to find an optimal solution for an optimization problem that arises in total least squares with inequality constraints, and in the correction of infeasible linear systems of inequalities. The stated problem is a nonconvex program with a special structure that allows the use of a reformulation–linearization–convexification technique for its solution. A b...

متن کامل

Solving fully fuzzy Linear Programming Problem using Breaking Points

Abstract In this paper we have investigated a fuzzy linear programming problem with fuzzy quantities which are LR triangular fuzzy numbers. The given linear programming problem is rearranged according to the satisfactory level of constraints using breaking point method. By considering the constraints, the arranged problem has been investigated for all optimal solutions connected with satisf...

متن کامل

Numerical method for solving optimal control problem of the linear differential systems with inequality constraints

In this paper, an efficient method for solving optimal control problems of the linear differential systems with inequality constraint is proposed. By using new adjustment of hat basis functions and their operational matrices of integration, optimal control problem is reduced to an optimization problem. Also, the error analysis of the proposed method is nvestigated and it is proved that the orde...

متن کامل

Use of the Interior-point Method for Correcting and Solving Inconsistent Linear Inequality Systems

By the correction of an inconsistent linear system we mean avoiding its contradictory nature by means of relaxing the constraints. In [V a2] it was shown that for inconsistent linear equation systems Ax = b, the correction of the whole augmented matrix (A, b) using Euclidean norm criterion, is a problem equivalent to finding the least eigenvalues (and corresponding eigenvectors) of the matrix (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002